小学数学教学中提问技巧探析
【摘要】对于小学生来说,他们发现问题的能力较弱,解决问题的能力也不强。本文从“针对性”“趣味性”“渐进性”“层次性”“开放性”和“互动性”几个方面,针对小学数学课堂提问的原则及技巧展开论述。希望通过本文的论述,能够以提高课堂提问的效率为契机,激发学生数学学习的兴趣,培养学生数学实践的技能与素养,促进学生的学习与成长。
【关键词】小学数学;提问技巧;研究与探索
提问,是推进课堂进程的有效手段,是吸引学生注意的有效途径,也是启发学生思维的有效策略。然而,在教学过程中,并不是所有问题都有意义和价值。一些无意义、无价值的问题不仅不会提高教学的效率,甚至会有损教学的质量。
一、秉持“渐进性”原则提问,遵循认知规律
数学是一门逻辑性很强的学科,学生只有先想明白了浅显的问题,才能具备探索深奥问题的能力,学生只有解决了“前因”的问题,才能得出“后果”的结论。因此,在课堂提问环节,教师应该遵循认知规律,秉持渐进性原则提问,使学生经历由浅到深、由易到难、由因到果的思维过程,展开循序渐进的学习。例如,在学习苏教版一年级下册《两位数加减两位数(不进位,不退位)》的时候,教师可以先出示下面的算式:“12+7=”“12+6=”。通过这两个算式,教师帮助学生唤醒“两位数加一位数”的学习经验和记忆,为学生的知识迁移做准备。在学生完成计算后,教师再出示新的算式:“12+13=”,并要求学生想办法计算算式的结果。因为有了前面两个算式的计算作为铺垫,学生很快想到了利用“拆分法”进行计算:有的把13分成7和6,进行分步计算;有的把13拆分成10和3,进行分步计算。在此基础上,教师进一步提出问题:“大家能够根据刚才的计算过程及结果,探索这道题的竖式计算方法吗?”就这样,教师秉持渐进性原则,逐渐增加提问的难度和深度,引导学生逐步展开思考。在这个过程中,教师充分尊重了学生的认知特点,帮助学生完成了思维的跨越和知识的迁移,使学生在问题引导下实现了独立思考和自主学习[1]。
二、秉持“层次性”原则提问,兼顾各方需求
在课堂提问过程中,教师不仅要尊重学生整体的认知规律,秉持渐进性原则设计问题和提出问题,还应该秉持层次性原则,针对不同层次的学生提出不同难度的问题,从而使全体学生都能够参与到课堂问答环节,并从课堂问答中获取学习灵感,感知学习乐趣。例如,在学习苏教版四年级下册《三角形的三边关系》的时候,教师可以为每组学生发放以下三组小木棒,木棒长度分别为:第一组,4cm、4cm、6cm;第二组,4cm、5cm、9cm;第三组,4cm、5cm、10cm。然后,教师要求学生利用这些小木棒摆拼三角形。当学生完成摆拼之后,教师提出了第一个问题:“这三组木棒中,哪组木棒能够摆成三角形?”这个问题的答案显而易见,是针对全体同学提出的问题。然后,教师提出第二个问题:“请大家计算和比较以下各组木棒的长度,发现在什么情况下三角形能够摆拼成功?”为了照顾一些基础较弱和反应较慢的同学,教师在第二个问题中给出了“计算”“比较”“长度”这三个关键词,能够引导大多数同学通过长度计算和比较,发现三角形三边关系的“奥秘”。因此,这个问题是针对大多数同学提出的。当学生通过努力,初步总结出三角形三边关系之后,教师可以再次提出问题:“现在,请大家将木棒的组序打乱,然后利用刚才我们得出的结论,尽可能多地摆拼三角形。”要完成这个任务,不仅要求学生了解三角形三边关系的基础知识,还要求学生能够灵活运用这一知识,通过对于木棒长度的精准计算及合理分配,尽可能多地摆拼三角形。显然,这个问题是一个“拔高”问题,是针对少数“尖子生”提出的问题。教师通过这些富有层次性特点的问题,成功激发了各个层次学生的潜能,并促进了不同层次学生之间的沟通与合作,从而兼顾了各方需求,促进了学生的整体进步[2]。
三、秉持“开放性”原则提问,培养发散思维
数学是一门客观而理性的学科,重视计算的精准性和思维的严谨性。然而,这并不意味着教师在教学中要墨守成规,思维僵化。相反,教师应该秉持开放性原则,为学生设计富有讨论空间与创新机会的问题,使学生通过多方面论证、多维度思考和多方法求解来提升思维的灵活性与敏捷性,拓宽思维的深度与广度。例如,在学习苏教版三年级下册《长方形、正方形的面积公式》的时候,教师往往给出长方形的长、宽或面积中的两项,要求学生求得另外一项的数值。如果教师始终延续这种提问方式,则学生的思维就会逐渐僵化,难以实现对于长方形面积公式的灵活运用。相反,如果教师提出下面的问题:“刘老汉想利用20m的栅栏,围成面积不小于16m2的长方形菜园,请问可以怎么围?”则能够使学生放飞思绪,大胆创新。面对这样一道答案不唯一、解题思路也不唯一的问题,有的学生采用了“试值法”,通过头脑中的初步估算,确定了长方形的长和宽:长8m、宽2m,然后用2×8=16m2,刚好符合题目要求;有的学生采用了“分类讨论法”,在表格中分别列出长方形的长和宽的各种可能性,然后一一计算,得出了全部可行的方案;还有的学生采用“推理法”,先是选取长和宽差值最大的数字,长9cm、宽1cm,得出面积结果9×1=9m2;再选取长和宽差值最小的数字,长5cm、宽5cm,得出面积结果5×5=25m2,从而推断出长和宽的差值越小,长方形的面积越大。利用这个推断,学生大致确定了长和宽的取值区间。通过学生给出的方案与结论我们不难看出,教师秉持开放性原则来设计和提出问题,能够更好地培养学生的发散思维,使学生的思维更具灵活性与敏捷性的特点,这对于促进学生数学思维的发展是十分有利的[3]。
四、秉持“互动性”原则提问,促进教学相长
古语有云:“学起于思,思起于疑,疑解于问。”这句话强调了学习过程中提问和质疑的重要性。因此,在小学数学教学中,教师应该注重课堂提问的互动性。也就是说,教师不仅自身要善于提问,也要善于引导和鼓励学生提问,通过课堂上的问与答,使师生共同经历思考、质疑、提问、释疑的过程,实现教学相长。因此,教师应该秉持互动性原则提问,采用“抛砖引玉”的方式,引发学生的质疑与发问,促进师生间的交流与互动。例如,在学习苏教版四年级下册《三角形内角和》的时候,教师通过带领学生完成对于三角形三个角的“拼接”,使学生认识到所给三角形的内角和为180°。然后,教师可以向学生提出问题:“如果我们把这个三角形放大,它的内角和也会随之变大吗?”这个问题引发了学生对于三角形内角和的新的思考。于是,他们纷纷动手,对于放大后的三角形的内角和进行测量,并得出了让自己意外的结论:放大后的三角形的内角和仍然是180°。面对学生迷茫的神情,教师问道:“大家愿意把心中的疑问跟我分享吗?”于是,学生纷纷提出了自己的质疑:“如果放大不会改变三角形的内角和,缩小会改变吗?”“如果改变三角形的大小不会改变它的内角和,改变它的形状会改变它的内角和吗?”“如果任何改变都不改变三角形内角和的大小,那是不是意味着,所有三角形的内角和都是180°?”……面对学生的疑问,教师可以跟学生共同动脑、动手、动口来解答这些疑问。这个过程,是师生互动的过程,更是教学相长的过程。这个案例充分向我们证明,教师秉持互动性原则提问,能够促进师生之间的沟通,实现师生共同学习、共同成长。综上所述,课堂提问,是教学中的一个环节,更是教学中的一门艺术。如果教师掌握了这门艺术,则能够大大提升教学效率、促进学生学习。因此,在小学数学教学中,教师应该加强对于提问技巧的研究与探索,秉持“针对性”“趣味性”“渐进性”“层次性”“开放性”和“互动性”的原则,通过高质量的提问来构建高效率的课堂,培养高素质的人才。
参考文献
[1]肖宏遵.小学数学课堂提问技巧研究[J].2020年教育信息化与教育技术创新学术论坛(南昌会场)论文集(四).南昌:重庆市鼎耘文化传播有限公司,2020(4):174-178.
[2]王喜洋.小学数学课堂提问技巧探讨[C]//教育部基础教育课程改革研究中心.2020年“互联网环境下的基础教育改革与创新”研讨会论文集.北京:教育部基础教育课程改革研究中心,2020(7):197.
[3]吴从威.让提问成为有效教学的桥梁――小学数学课堂提问的分析与思考[J].读与写(教育教学刊),2019(2):161.
陈镜羽 江苏省新沂市草桥镇周嘴中心小学
拼音教学论文 高中地理论文 素描教学论文 舞蹈教学论文 教学探究论文 音标教学论文 课程设计论文 教学模式论文 案例教学论文 播音主持论文 音乐教学论文 化学实验论文 政治教学论文 教育学论文 赏识教育论文 高效课堂论文 入学教育论文 实验教学论文 职教论文 外语教学论文 教学研究论文 学科建设论文 开放教育论文 教学设计论文 教学质量论文 教学方法论文 培训论文 教育技术论文 教育思想论文 教师教学论文